252 research outputs found

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    Circadian Clock Gene Expression in the Coral Favia fragum over Diel and Lunar Reproductive Cycles

    Get PDF
    Natural light cycles synchronize behavioral and physiological cycles over varying time periods in both plants and animals. Many scleractinian corals exhibit diel cycles of polyp expansion and contraction entrained by diel sunlight patterns, and monthly cycles of spawning or planulation that correspond to lunar moonlight cycles. The molecular mechanisms for regulating such cycles are poorly understood. In this study, we identified four molecular clock genes (cry1, cry2, clock and cycle) in the scleractinian coral, Favia fragum, and investigated patterns of gene expression hypothesized to be involved in the corals' diel polyp behavior and lunar reproductive cycles. Using quantitative PCR, we measured fluctuations in expression of these clock genes over both diel and monthly spawning timeframes. Additionally, we assayed gene expression and polyp expansion-contraction behavior in experimental corals in normal light:dark (control) or constant dark treatments. Well-defined and reproducible diel patterns in cry1, cry2, and clock expression were observed in both field-collected and the experimental colonies maintained under control light:dark conditions, but no pattern was observed for cycle. Colonies in the control light:dark treatment also displayed diel rhythms of tentacle expansion and contraction. Experimental colonies in the constant dark treatment lost diel patterns in cry1, cry2, and clock expression and displayed a diminished and less synchronous pattern of tentacle expansion and contraction. We observed no pattern in cry1, cry2, clock, or cycle expression correlated with monthly spawning events suggesting these genes are not involved in the entrainment of reproductive cycles to lunar light cycles in F. fragum. Our results suggest a molecular clock mechanism, potentially similar to that in described in fruit flies, exists within F. fragum

    GEANT4--a simulation toolkikt

    Get PDF
    Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics

    Early Stage Biomineralization in the Periostracum of the ‘Living Fossil’ Bivalve Neotrigonia

    Get PDF
    A detailed investigation of the shell formation of the palaeoheterodont ‘living fossil’ Neotrigonia concentrated on the timing and manufacture of the calcified ‘bosses’ which stud the outside of all trigonioid bivalves (extant and fossil) has been conducted. Electron microscopy and optical microscopy revealed that Neotrigonia spp. have a spiral-shaped periostracal groove. The periostracum itself is secreted by the basal cell, as a thin dark pellicle, becoming progressively transformed into a thin dark layer by additions of secretions from the internal outer mantle fold. Later, intense secretion of the internal surface of the outer mantle fold forms a translucent layer, which becomes transformed by tanning into a dark layer. The initiation of calcified bosses occurred at a very early stage of periostracum formation, deep within the periostracal groove immediately below the initialmost dark layer. At this stage, they consist of a series of polycyclically twinned crystals. The bosses grow as the periostracum traverse through the periostracal groove, in coordination with the thickening of the dark periostracal layer and until, upon reaching the mantle edge, they impinge upon each other and become transformed into large prisms separated by dark periostracal walls. In conclusion, the initial bosses and the external part of the prismatic layer are fully intraperiostracal. With later growth, the prisms transform into fibrous aggregates, although the details of the process are unknown. This reinforces the relationships with other groups that have the ability to form intraperiostracal calcifications, for example the unionoids with which the trigonioids form the clade Paleoheterodonta. The presence of similar structures in anomalodesmatans and other euheterodonts raises the question of whether this indicates a relationship or represents a convergence. The identification of very early calcification within an organic sheet has interesting implications for our understanding of how shells may have evolved.Coordinated Research Projects CGL2010-20748-C02-01 (AGC, EMH) and 02 (CS) (DGI, Spanish MICINN); the Research Group RNM363 (Consejería de Economía, Investigación, Ciencia y Empleo, Junta de Andalucía); and the FP7 COST Action TD0903 of the European Community

    Development of Gene Expression Markers of Acute Heat-Light Stress in Reef-Building Corals of the Genus Porites

    Get PDF
    Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide

    The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae)

    Get PDF
    corecore